
Beyond isolation: OS verification as a foundation for
correct applications

Matthias Brun

ETH Zurich

matthias.brun@inf.ethz.ch

Reto Achermann

University of British Columbia

achreto@cs.ubc.ca

Tej Chajed

VMware Research

tchajed@vmware.com

Jon Howell

VMware Research

howell@vmware.com

Gerd Zellweger

VMware Research

gzellweger@vmware.com

Andrea Lattuada

VMware Research

lattuada@vmware.com

ABSTRACT
Verified systems software has generally had to assume the

correctness of the operating system and its provided services

(like networking and the file system). Even though there exist

verified operating systems and file systems, the specifications

for these components do not compose with applications to

produce a fully verified high-performance software stack.

In this position paper, we lay out our vision for what it

would look like to have a verified OS with verified applica-

tions, all with good multi-core performance. We’ve explored

a part of the verification by proving a page table correct

already, but the larger goal is to lay out a vision for an ambi-

tious project that supports an application verified from its

high-level specification down to the hardware.

ACM Reference Format:
Matthias Brun, Reto Achermann, Tej Chajed, Jon Howell, Gerd

Zellweger, and Andrea Lattuada. 2023. Beyond isolation: OS ver-

ification as a foundation for correct applications. In Workshop
on Hot Topics in Operating Systems (HotOS ’23), June 22–24, 2023,
Providence, RI, USA. ACM, New York, NY, USA, 8 pages. https:

//doi.org/10.1145/3593856.3595899

1 INTRODUCTION
Suppose we wanted to write a high-assurance distributed

system, down to its implementation. Today, we have no way

to verify such a system together with the operating system

it depends on. Instead, the user-space components have to

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

HotOS ’23, June 22–24, 2023, Providence, RI, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 979-8-4007-0195-5/23/06. . . $15.00

https://doi.org/10.1145/3593856.3595899

be verified against a manually derived, error-prone environ-

ment specification [15]. It is time to build a high-performance,

multi-core, and formally verified OS kernel whose specifica-

tion supports verifying realistic multi-core applications, and

which provides enough services to even implement these in-

teresting applications in the first place. There exists verified

concurrent software that implicitly assumes the correctness

of the operating system and some of its essential services

like the file system and networking. There also exist verified

operating systems and file systems. However, the specifica-

tions and sometimes even programming APIs for all of these

components are not mutually compatible.

As an example of the kind of application we are interested

in verifying, consider the data-storage node in a distributed

block store like GFS [16] or S3. In fact, Amazon even de-

scribes their use of lightweight formal methods to verify

such a storage node for the upcoming version of S3 [8]. If

we wanted to verify not just core logic but also its system

dependencies, we would want to have verified versions of

the following OS components:

• a scheduler (to run processes),

• memory management (physical memory, page tables),

• a filesystem (persistence, sharing),

• device drivers (network controller, disk controllers,

interrupt controller, timer, serial/graphical output),

• processmanagement (spawning, waiting, signals, killing),

• per-process threads and synchronization mechanisms:

mutexes, semaphores, condition variables,

• some network stack for communication,

• system libraries (e.g., libc).

We believe that with the right combination of OS design

and verification tooling and techniques, it is finally possible

to construct a verified operating system that can be a founda-

tion for fully verified client applications, with the complexity

and performance characteristics of the unverified but critical

software running in our data centers and mobile devices

right now. To build such a foundation, we need to define

correctness for our operating system in a way that enables

https://orcid.org/0009-0004-5349-4347
https://orcid.org/0000-0003-3263-7236
https://orcid.org/0000-0002-9889-4828
https://orcid.org/0000-0002-1781-2473
https://orcid.org/0000-0002-1197-595X
https://orcid.org/0000-0002-9303-452X
https://doi.org/10.1145/3593856.3595899
https://doi.org/10.1145/3593856.3595899
https://doi.org/10.1145/3593856.3595899

HotOS ’23, June 22–24, 2023, Providence, RI, USA Matthias Brun, Reto Achermann, Tej Chajed, Jon Howell, Gerd Zellweger, and Andrea Lattuada

s
e
L
4

V
e
r
v
e

H
y
p
e
r
k
e
r
n
e
l

C
e
r
t
i
K
O
S

s
e
K
V
M
+
V
R
M

Kernel memory safety ✓ ✓ ✓ ✓ ✓
Specification refinement ✓ ✓ ✓ ✓ ✓
Security properties ✓ ✗ ✓ (✓) ✓
Multi-processor support ✗ ✗ ✗ ✓ ✓
Process-centric spec ✗ ✗ ✗ ✗ ✗

Table 1: Comparison of OS verification projects

the verification of these client applications. We present our

model in Section 3. Once we have defined correctness, we

need to carefully select the OS design, the verification tool

and the verification methodology.

The starting point for our proposed verified operating

system is NrOS [6], a multi-core OS written in Rust. A key

feature of NrOS is that its data structures use node repli-
cation, a technique that systematically turns a sequential

data structure into a linearizable concurrent one. While node

replication was intended to simplify kernel development, it

also simplifies verification of the kernel’s concurrent data

structures while still getting good performance.We elaborate

on NrOS and its design in Section 4.1.

We choose the Rust-based Verus [24] verification language

to verify NrOS. Verus has good support for verifying low-

level systems and inherits Rust’s safety and ability to directly

interact with the hardware. Verus also supports efficient ver-

ification techniques for complex systems and concurrency.

These are a great fit for NrOS’ design and make it plausible to

broaden the verification scope to include the application de-

pendencies we have listed. We introduce Verus in Section 4.2,

and we describe our verification strategy in Section 4.3.

In this paper, we focus on functional correctness rather

than security. Functional correctness already implies integrity,

since no allowed behavior of a process can corrupt the state

of an unrelated process. However, a verified OS should also

guarantee some level of isolation between system compo-

nents, either to allow secure multi-tenancy or as a defense-

in-depth strategy to isolate and protect different components

with different levels of trust. An isolation guarantee could

also be verified for our proposed OS but we have not explored

specifying and verifying such a property yet.

2 BACKGROUND
The most closely related work to our envisioned system

are earlier verified operating systems, namely seL4 [23],

Verve [37], Hyperkernel [32], CertiKOS [17] and SeKVM [26,

s
e
L
4

V
e
r
v
e

H
y
p
e
r
k
e
r
n
e
l

C
e
r
t
i
K
O
S

s
e
K
V
M
+
V
R
M

Scheduler ✓ ✓ ✓ ✓ ✓
Memory management ✓ ✓ ✓ ✓ ✓
Filesystem ✗ ✗ (✓) ✗ ✗
Complex drivers ✗ ✓ ✗ ✗ ✓
Process management ✓ ✗ ✓ ✓ ✓
Threads and synchronization ✗ ✓ ✗ ✓ ✗
Network stack ✗ ✗ ✗ ✗ ✗
System libraries ✗ ✗ ✗ ✗ ✗

Table 2: Verified OS components

27] including weak memory (VRM) [35]. Table 1 summarizes

the achievements of these major OS verification projects.

All of them verify memory safety of the kernel mem-

ory and the system’s adherence to some high-level spec.

SeL4 [30], Hyperkernel and SeKVM go one step further and

formally prove crosscutting theorems about their high-level

specifications to ensure security properties such as integrity

and confidentiality. CertiKOS does so only for an earlier,

single-threaded version of the system with IPC disabled [13].

Only CertiKOS and SeKVM are verified for multi-processor

hardware. However, their performance is not competitive

with unverified, scalable kernel designs [4, 12, 36] proposed

by the community over the past decade. These systems can

achieve near-linear scalability with a large number of cores

for kernel operations whereas conventional OS designs suffer

from degraded performance due to lock contention.

SeKVM is a modified version of the Linux KVM hyper-

visor. It consists of a small core that is formally verified to

enforce confidentiality and integrity of VM data, whereas

most functionality is provided by unverified code. The secu-

rity properties are proven as noninterference properties over

the high-level spec. SeKVM’s original proofs assume sequen-

tial consistency of the memory model but are extended in a

later publication [35] to assume a model of ARM’s relaxed

memory semantics instead.

SMT solvers have been used in Verve [37], Hyperker-

nel [32] and the Serval framework [31], which adapted Hy-

perkernel’s approach to verify other kernels. These approaches

severely limit the scope of either the verified properties or the

verified code’s expressiveness: Verve uses only a single ad-

dress space and focuses on verifying type and memory safety,

while Hyperkernel and Serval require statically-bounded

loops and disallow recursion.

The specifications in all these projects are designed primar-

ily to facilitate proofs of certain properties, such as isolation

Beyond isolation: OS verification as a foundation for correct applications HotOS ’23, June 22–24, 2023, Providence, RI, USA

or type safety. As a result, they do not lend themselves easily

to interfacing with verified user code. For example, while

all projects verify memory management to some degree,

seL4 and Hyperkernel among others rely on self-paging or

external paging logic, and only verify that page directory

entries are installed safely by the kernel, but do not verify

the address space management logic in user-space. SeKVM

additionally proves that the page table corresponds to an

abstract map from virtual to physical addresses. However, in

a user-space process, we are mainly interested in knowing

that the implemented paging logic results in the expected

memory semantics, i.e., we want a process-centric spec.
Table 2 looks at the scope of these projects concerning the

components mentioned in Section 1. The verified operating

systems provide a minimal subset of verified services at the

OS level, enough to run applications and to verify their iso-

lation but they push most of these components (file system,

network, and device drivers) into the unverified userspace.

The system spec that a process interacts with is very narrow.

Aside from the projects already discussed in this paper,

several other efforts have verified parts of an OS such as

hardware initialization [3], file systems [1, 10, 11], locking

primitives [28, 33], network functions [34], cryptographic

primitives [5, 7] etc. Even though many such verified compo-

nents exist, it is not clear how they can be composed to form

a complete, verified operating system with a rich contract

provided to applications.

3 THE CLIENT APPLICATION CONTRACT
What does it mean for an OS to be correct? We propose a

definition of OS correctness based on the behavior of appli-

cations running on top.

Following OSTEP [2], an operating system does three

things: it virtualizes resources (especially memory and the

CPU, but also for example the network device), enables con-

currency (both thread- and process-level), and exposes a file

system for persistence. Our goal is to carry out verification

of the applications running on top of this spec, which then

needs to directly describe the virtualized execution environ-

ment each process experiences: an abstract model which

only has virtualized memory, processes, threads, and the

abstract state of the network and file system. The organiza-

tion we propose for this high-level OS spec is to divide it

into two categories: the execution model provided by the OS

(which captures how the memory and CPU are virtualized)

and the behavior of the supported system calls (to access

the network and file system, and to use the OS-provided

concurrency primitives).

Execution model. In this approach, the memory and CPU

execution model that the OS provides is still at the level of

machine instructions even in its abstract spec, which would

be cumbersome to directly write verified software against.

We propose that pragmatically it makes sense to take a

systems programming language like Rust and assume that

the operating system’s abstract model of CPU execution

and memory (including concurrency between OS threads)

matches the semantics expected by the Rust compiler. That

is to say, we would verify application code assuming correct-

ness of the compiler, which is less likely to be a source of

bugs than a manually derived execution environment spec,

which is often error-prone even in verified systems [15].

System calls. We illustrate our proposed approach for sys-

tem calls with the example of a hypothetical, simplified read

syscall. The high-level spec for the system call is a state ma-

chine, whose state contains the file descriptors’ current state.

Execution of the syscall corresponds to a transition, which

relates the old state pre to the new state post:

spec fn read_spec(pre: State, post: State, fd: usize,
buffer: Seq<u8>, read_len: usize)

{ pre.files[fd].locked
&& read_len == min(buffer.len(), pre.files[fd].size -

pre.files[fd].offset)
&& buffer[0 .. read_len] == pre.files[fd].contents[

pre.files[fd].offset ..
(pre.files[fd].offset + read_len)]

&& post.files[fd].offset == pre.files[fd].offset + read_len }

The transition defines the operation that needs to be refined

by the kernel’s implementation of the syscall as well as the

semantics that a user space application can rely on. From the

perspective of user space code, this interface is represented

as part of a type Sys that encapsulates the syscall interface.

pub fn read(sys: &mut Sys, fd: usize, buffer: &mut [u8]) -> (
read_len: u64)

requires sys.view().files[fd].locked
ensures read_spec(old(sys).view(), sys.view(), fd, buffer.view(),
read_len)

The function’s ensures clause describes how the system

model – as perceived by the client application – changes

in response to the call to read. The view() functions abstract

the concrete runtime values to mathematical representations.

sys.view() and old(sys).view() are State objects from the

high-level OS spec above and represent the system state seen

by the user space application before and after the call.

Notably, this high-level spec for system calls hides many

details of the OS implementation. For example, when the OS

makes a context switch, processes view this as just another

interleaving of threads. Spawning a thread might require

allocating kernel data structures and modifying scheduler

state, but at the abstract level simply creates a new thread

associated with the current process. Even reading and writ-

ing memory is a complicated hardware operation (involving

page table and TLB lookups) which is abstracted to a simple

high-level operation; this refinement is covered by our exist-

ing NrOS prototype and described in Section 5. This design

is similar to IronFleet [20] and VeriBetrKV [18].

HotOS ’23, June 22–24, 2023, Providence, RI, USA Matthias Brun, Reto Achermann, Tej Chajed, Jon Howell, Gerd Zellweger, and Andrea Lattuada

It is also possible to implement and verify core “standard

library” features like those in glibc and pthreads, connecting

to the model of the operating system. This allows the kernel

APIs to remain narrow while giving applications a higher-

level programming API with an easier-to-use spec — for

example, we might expose futexes [14] from the kernel and

then verify a userspace mutex implementation on top.

In this design, the state machine and function specifica-

tions of the syscalls need to be connected correctly by the

syscall mechanism. This entails an assumption about the

hardware syscall mechanism transferring control between

kernel-space and user-space while preserving relevant reg-

isters. It further entails three verification obligations: mar-

shalling, mapping, and data-race freedom.

The marshalling obligation is guaranteeing that calling

read results in its parameters and return values being cor-

rectlymarshalled across the user- and kernel-space boundary.

We can prove that values correctly round-trip through seri-

alization and deserialization so that syscall arguments are

consistent between user-space and kernel-space. For sys-

tems where some of the arguments are passed in registers,

we would need to model the ABI as an assumption of the

serialization library, and an unverified shim that unpacks

the values from registers before transferring control to the

syscall handler.

The mapping obligation is that the process memory for

the buffer appear at a known location in kernel space. This

becomes an additional verification condition for the kernel’s

page table mapping logic.

Finally, the data-race freedom obligation is that memory

holding syscall data (e.g. the memory backing buffer) will

not bemodified or accessed by other threads while the syscall

is being handled. Addressing this obligation in general is

an open challenge. If the application is in Rust, its unique

ownership properties can help: the mutable reference to

buffer is guaranteed to be unique by the type system.

The atomic high-level spec in the example is unrealistic

because it implies that the system state only changes in

response to the current threads’ actions. How to address this

is an open question: we need to be able to “split up” this state

so that each thread is only concerned with the fragment it

needs to interact with. A separation-logic based approach

leveraging Verus’s linear ghost types, inspired by Iris [21]

and IronSync [19], may allow composing the reasoning for

the various threads and processes in the system.

4 VERIFIED NROS
We propose that the design of the NrOS operating system [6]

and the Verus [24] semi-automated verification tool for Rust,

combined with the IronSync [19] concurrency-reasoning

methodology, are a promising choice to build an OS proven

to provide such an application interface as a foundation to

verify client programs.

4.1 NrOS design
NrOS is an open-source multikernel OS, written in Rust, that

can run many POSIX applications. NrOS was constructed

primarily with sequential logic and sequential data struc-

tures, which are scaled across cores and nodes using node
replication (“NR”) [9], a log-based shared-memory synchro-

nization mechanism inspired by state machine replication in

distributed systems. While this approach had the intention

of simplifying the kernel development and complexity, this

design can also simplify the formal verification, especially

when reasoning about concurrency. IronSync [19] verifies

the node replication algorithm, which is a key part of our

verification methodology (Section 4.3).

NR replicates sequential code and its data structures on

each NUMA node and maintains consistency through an

operation log. It achieves read-concurrency with a readers-

writer lock and write-concurrency through flat combining,

which batches operations from multiple threads and logs

them atomically. To scale writes further, NrOS shards kernel

state into multiple NR instances and replicates them over

independent logs, allowing for scalability to many cores.

The NrOS kernel provides the following main services:

memory and device management, processes, scheduling, and

a file system. In user space, NrOS provides a user-level thread

scheduler with synchronization primitives and a memory

allocator. Further, programs can link against rump [22], a

NetBSD-based library operating system, which provides OS

components so that programs can use the POSIX API.

The BSD components are written in C and are unlikely to

be verifiable in their current form. However, they provide

an incremental path during the transition to fully verified

components as they can be replaced one by one with verified

components. A similar approach to constructing concurrent,

scalable subsystems as taken in the kernel with NR may be

applicable to many of the user-space components such as

the network stack, user-level thread scheduler, etc.

4.2 Verus
The verification tool we choose, Verus [24], is an open-source

integrated verification language based on the Rust program-

ming language with semi-automated reasoning using an

SMT solver.

Verus is designed to support efficient verification of low-

level sequential code. Recent work has demonstrated that

similar verification languages can scale up to software of

thousands of lines of implementation code with a manage-

able proof burden [18]. Verus leverages the ownership type

system in the Rust programming language to reason about

Beyond isolation: OS verification as a foundation for correct applications HotOS ’23, June 22–24, 2023, Providence, RI, USA

the program’s memory and potential aliasing. This is known

to improve the developer experience by reducing proof bur-

den and verification times [25].

In our experience so far, Verus has been effective in rea-

soning about sequential logic and sequential data structures,

which constitute the primary building blocks of NrOS. In

addition, Verus supports distributed system state-machine

reasoning, in the style of IronFleet [20], which we plan to

use to model the high-level interaction between the kernel

replicas, the hardware, and the client application interface.

Verus also supports shared-memory concurrency reasoning,

borrowing ideas from IronSync [19]. Concurrency reasoning

is necessary to verify the correctness of the node replication
scheme across replicas and the lock-based operations within

each replica shared by multiple concurrent cores.

Crucially, Verus is designed to verify low-level systems

software. We have initial evidence (Section 5) that it is an

effective tool for a modern OS verification project, thanks to

its ability to directly reason about imperative systems code

that interacts with the hardware, thanks to Rust’s ability to

directly interact with hardware at a low level, and thanks to

Rust’s safety properties [29], which Verus inherits.

4.3 Verification methodology
NrOS relies on node replication to implement scalable data

structures and consequently the correctness of the system

depends on the correctness of the node replication algorithm.

IronSync [19] verified the node replication algorithm in

Dafny, showing that a sequential data structure replicated

with NR remains linearizable. We just completed porting the

proofs to Verus and Rust.

This lets us take verified sequential data structures, such

as those backing the paging or scheduler logic of the OS, and

have atomic access to them from concurrent kernel replicas

at the system’s cores. We can then compose the atomic state

machines for the replicated data structures with the state

machine representing each kernel thread’s logic to prove that

the kernel supports the abstract client application interface

as described in Section 3.

The replication of sequential data structures using NR

as a common concurrency mechanism is a design element

of NrOS that both provides good multi-core scalability and

is a great fit for our verification methodology. Instead of

needing to reason about fine-grained concurrency for all in-

teracting OS components, we can verify NR once and reason

about their linearizable interface once they have been made

scalable with NR.

4.4 The refinement theorem
The theorem we need to prove is that the high-level spec

described in Section 3 is refined by a model of the hardware

execution, which includes the operating-system code and all

the physical state of the CPU and devices. Refinement says

that for every behavior of the hardware execution there exists

a corresponding execution of the abstract model with the

same behavior. In this case the behavior we want to preserve

is the return values of instructions, including reading from

memory and system calls.

5 THE PAGE TABLE PROTOTYPE
We have used our proposed approach to implement and

verify page table management code for x86-64. This provides

initial evidence that our approach (i) can faithfully model

the relevant hardware (e.g., memory accesses translated by

the MMU), (ii) is effective at proving the correctness of low-

level systems code that interacts with the hardware, and (iii)

results in code that has comparable performance to NrOS’

unverified implementation.

Figure 2 shows the structure of our prototype implementa-

tion. Our code includes functions to map and unmap frames

in a page table and a function to resolve a virtual address

(if it is mapped). To verify the code, we developed a hard-
ware spec (1) that describes the hardware environment, and a

high-level spec (2) that describes the behavior of map, unmap,

and resolve. We prove that the page table implementation

(3) refines the high-level spec, if it is run in the intended

hardware environment.

High-level spec. This spec defines the behavior of a correct
implementation from a client application’s perspective as

described in Section 3. Namely, accessing memory and how

an application’s view of its virtual memory expands when

mapping memory and shrinks when unmapping it. The high-

level spec is a state machine with transitions for memory

reads and writes as well as map, unmap and resolve. The

spec describes the page table as a mathematical map from

virtual addresses to page table entries storing the physical

address and permission bits.

Hardware spec. The hardware spec describes the intended
runtime environment of the implementation. In our proto-

type this is a single-core x86-64 processor and includes a

description of how the MMU translates memory addresses

by interpreting the page table bits in memory, i.e., walking

the page table, or using cached translations from the TLB.

Implementation. We implement executable, concrete func-
tions in Rust for the map, unmap and resolve operations. Those

functions read and write memory locations of the page ta-

ble to perform mapping or unmapping of frames, as well as

allocate or free memory used to store the page table.

Correctness Proof.We prove that the resulting state ma-

chine from the combination of the implementation and the

hardware spec refines the high-level spec. In other words,

given the MMU’s interpretation function of the page table in

HotOS ’23, June 22–24, 2023, Providence, RI, USA Matthias Brun, Reto Achermann, Tej Chajed, Jon Howell, Gerd Zellweger, and Andrea Lattuada

3 6 9
Verification Time [s]

0
0.25
0.50
0.75

1

Cu
m

m
ul

at
iv

e
fra

ct
io

n

(a) CDF of all 220 verification conditions.

1 8 16 24 28
Cores

0
20
40
60

La
te

nc
y

[u
s]

NrOS Unverified NrOS Verified

(b) Map Latency

1 8 16 24 28
Cores

0
20
40
60

La
te

nc
y

[u
s]

NrOS Unverified NrOS Verified

(c) Unmap Latency

Figure 1: Verification times and map/unmap latencies of the verified page table implementation

High-level Specification

Prefix Tree Map

Page Table Implementation
+

Hardware Specification1

2

3

State: Map VAddr → PTE
Ops: map/unmap/resolve

Refinement proofs

Executable code

MMU Description, …

Figure 2: Proof structure of the page table prototype

memory, the implemented map, unmap and resolve functions

have the same behavior as their counterparts in the abstract

high-level spec representing the client application interface.

The implementation is then functionally correct. This corre-
spondence represents the lion’s share of the proof effort, as it

requires us to map from a multi-level tree structure encoded

as bits to a flat abstract data type, i.e. the logical map from

virtual addresses to page table entries.

Evaluation. We hypothesize that our tools of choice can

achieve a good enough verification experience, character-

ized by an acceptably low proof burden and short iteration

time, and that the verified code matches the performance of

unverified NrOS. To evaluate this hypothesis, we measure

the proof-to-code ratio for the page table code and the total

time to verify the code.

Our results show that the proof-to-code ratio is 10:1. This

metric is only an indication and it is hard to compare across

verification efforts with even small differences between their

theorems. However, this number is in line with or better than

the verification burden reported by other OS verification

projects: The approximate ratios for SeL4 and CertiKOS are

19:1 and 20:1, respectively. SeKVM for weak memory has a

ratio of approximately 10:1, though this does not include the

framework that was developed for that project. Verve — by

verifying less extensive properties — achieves a ratio of 3:1.

Extending verification to our proposed scope may be un-

realistic with a ratio of 10:1. In particular, even small libc

implementations such as musl comprise tens of thousands

lines of code. However, we expect that verifying library code

can be done with significantly lower proof effort. A consid-

erable portion of our page table proofs is dedicated to the

layered refinement structure that will not be necessary for

the relatively simpler properties of many library functions.

The SeKVM authors explicitly highlight this proof step as

the most complex refinement proof in SeKVM [26].

The total time to verify our code is approximately 40 sec-

onds. Figure 1a shows further that all functions are indi-

vidually verified in at most 11 seconds. These verification

times compare favorably with previous semi-automated ap-

proaches [18] and demonstrate that the tooling and method-

ology enable sufficiently rapid development iteration times.

To compare the performance of the verified page table

implementation to the unverified implementation in NrOS,

we measure the latency of repeatedly executing system calls

to map (Figure 1b) frames and unmap a frame (Figure 1c)

in the address space of the benchmark process. Our results

show that the verified implementation can closely match the

performance of the unverified implementation.

6 CONCLUDING REMARKS
Verifying a complete OS is a huge undertaking and we do

not believe the scope we are proposing is feasible for just one

research group. Therefore, we hope to inspire the community

to work together towards this vision. To make this possible,

we would first need to understand how to define interfaces

between verification efforts that use different tooling while

still connecting the final artifacts.

There are two specific research challenges within the

scope of a verified operating system we think are interesting.

First, to our knowledge, there is no prior work that verified

a threading library (e.g., with the scope of pthreads) nor did

we find a verified high-performance network stack. These

artifacts in themselves would be interesting to pursue. Sec-

ond, can we as a community define a common standard for

verifying libraries and components that can be shared and

linked as easily as we do for implementations?

Beyond isolation: OS verification as a foundation for correct applications HotOS ’23, June 22–24, 2023, Providence, RI, USA

REFERENCES
[1] Amani, S., Hixon, A., Chen, Z., Rizkallah, C., Chubb, P., O’Connor,

L., Beeren, J., Nagashima, Y., Lim, J., Sewell, T., Tuong, J., Keller,

G., Murray, T., Klein, G., and Heiser, G. Cogent: Verifying high-

assurance file system implementations. SIGPLAN Not. 51, 4 (mar 2016),

175–188.

[2] Arpaci-Dusseau, R. H., and Arpaci-Dusseau, A. C. Operating Sys-
tems: Three Easy Pieces. Arpaci-Dusseau Books, 2018.

[3] Athalye, A., Belay, A., Kaashoek, M. F., Morris, R., and Zeldovich,

N. Notary: A device for secure transaction approval. In Proceedings of
the 27th ACM Symposium on Operating Systems Principles (SOSP 2019)
(Hunstville, ON, Canada, Oct. 2019).

[4] Baumann, A., Barham, P., Dagand, P.-E., Harris, T., Isaacs, R., Peter,

S., Roscoe, T., Schüpbach, A., and Singhania, A. The multikernel:

A new os architecture for scalable multicore systems. In Proceedings
of the ACM SIGOPS 22nd Symposium on Operating Systems Principles
(New York, NY, USA, 2009), SOSP ’09, Association for Computing

Machinery, p. 29–44.

[5] Beringer, L., Petcher, A., Ye, K. Q., and Appel, A. W. Verified correct-

ness and security of openssl hmac. In Proceedings of the 24th USENIX
Conference on Security Symposium (USA, 2015), SEC’15, USENIX Asso-

ciation, p. 207–221.

[6] Bhardwaj, A., Kulkarni, C., Achermann, R., Calciu, I., Kashyap, S.,

Stutsman, R., Tai, A., and Zellweger, G. Nros: Effective replication

and sharing in an operating system. In 15th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2021, July 14-16,
2021 (2021), A. D. Brown and J. R. Lorch, Eds., USENIX Association,

pp. 295–312.

[7] Bond, B., Hawblitzel, C., Kapritsos, M., Leino, R., Lorch, J., Parno,

B., Rane, A., Setty, S., and Thompson, L. Vale: Verifying high-

performance cryptographic assembly code. In Proceedings of the
USENIX Security Symposium (August 2017), USENIX.

[8] Bornholt, J., Joshi, R., Astrauskas, V., Cully, B., Kragl, B., Markle,

S., Sauri, K., Schleit, D., Slatton, G., Tasiran, S., Geffen, J. V.,

and Warfield, A. Using lightweight formal methods to validate a

key-value storage node in amazon S3. In SOSP ’21: ACM SIGOPS 28th
Symposium on Operating Systems Principles, Virtual Event / Koblenz,
Germany, October 26-29, 2021 (2021), R. van Renesse and N. Zeldovich,

Eds., ACM, pp. 836–850.

[9] Calciu, I., Sen, S., Balakrishnan, M., and Aguilera, M. K. Black-box

Concurrent Data Structures for NUMA Architectures. In Proceedings
of the ACM Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS) (2017).

[10] Chajed, T., Tassarotti, J., Theng, M., Kaashoek, M. F., and Zel-

dovich, N. Verifying the DaisyNFS concurrent and crash-safe file

system with sequential reasoning. In Proceedings of the 16th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
’22) (July 2022).

[11] Chen, H., Ziegler, D., Chajed, T., Chlipala, A., Kaashoek, M. F.,

and Zeldovich, N. Using crash hoare logic for certifying the fscq

file system. In Proceedings of the 25th Symposium on Operating Sys-
tems Principles (New York, NY, USA, 2015), SOSP ’15, Association for

Computing Machinery, p. 18–37.

[12] Clements, A. T., Kaashoek, M. F., Zeldovich, N., Morris, R. T.,

and Kohler, E. The scalable commutativity rule: Designing scalable

software for multicore processors. ACM Trans. Comput. Syst. 32, 4 (jan
2015).

[13] Costanzo, D., Shao, Z., and Gu, R. End-to-end verification of

information-flow security for C and assembly programs. In Proceed-
ings of the 37th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2016, Santa Barbara, CA, USA, June

13-17, 2016 (2016), C. Krintz and E. D. Berger, Eds., ACM, pp. 648–664.

[14] Drepper, U. Futexes are tricky. Futexes are Tricky, Red Hat Inc, Japan
4 (2005).

[15] Fonseca, P., Zhang, K., Wang, X., and Krishnamurthy, A. An empir-

ical study on the correctness of formally verified distributed systems.

In Proceedings of the Twelfth European Conference on Computer Sys-
tems, EuroSys 2017, Belgrade, Serbia, April 23-26, 2017 (2017), G. Alonso,

R. Bianchini, and M. Vukolic, Eds., ACM, pp. 328–343.

[16] Ghemawat, S., Gobioff, H., and Leung, S.-T. The Google file system.

In Proceedings of the Nineteenth ACM Symposium on Operating Sys-
tems Principles (New York, NY, USA, 2003), SOSP ’03, Association for

Computing Machinery, p. 29–43.

[17] Gu, R., Shao, Z., Chen, H., Wu, X. N., Kim, J., Sjöberg, V., and

Costanzo, D. Certikos: An extensible architecture for building certi-

fied concurrent OS kernels. In 12th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2016, Savannah, GA, USA,
November 2-4, 2016 (2016), K. Keeton and T. Roscoe, Eds., USENIX

Association, pp. 653–669.

[18] Hance, T., Lattuada, A., Hawblitzel, C., Howell, J., Johnson, R.,

and Parno, B. Storage systems are distributed systems (so verify

them that way!). In 14th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2020, Virtual Event, November 4-6,
2020 (2020), USENIX Association, pp. 99–115.

[19] Hance, T., Zhou, Y., Lattuada, A., Achermann, R., Conway, A.,

Stutsman, R., Zellweger, G., Hawblitzel, C., Howell, J., and

Parno, B. Sharding the state machine: Automated modular reasoning

for complex concurrent systems. In Proceedings of the USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI) [To
Appear] (July 2023).

[20] Hawblitzel, C., Howell, J., Kapritsos, M., Lorch, J. R., Parno, B.,

Roberts, M. L., Setty, S., and Zill, B. IronFleet: Proving practical

distributed systems correct. In Proceedings of the 25th Symposium on
Operating Systems Principles (New York, NY, USA, 2015), SOSP ’15,

ACM, pp. 1–17.

[21] Jung, R., Swasey, D., Sieczkowski, F., Svendsen, K., Turon, A.,

Birkedal, L., and Dreyer, D. Iris: Monoids and invariants as an

orthogonal basis for concurrent reasoning. In Proceedings of the 42nd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL 2015, Mumbai, India, January 15-17, 2015 (2015),
S. K. Rajamani and D. Walker, Eds., ACM, pp. 637–650.

[22] Kantee, A. Flexible Operating System Internals: The Design and Im-
plementation of the Anykernel and Rump Kernels. PhD thesis, Aalto

University, 2012.

[23] Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D.,

Derrin, P., Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish,

M., Sewell, T., Tuch, H., andWinwood, S. sel4: formal verification of

an OS kernel. In Proceedings of the 22nd ACM Symposium on Operating
Systems Principles 2009, SOSP 2009, Big Sky, Montana, USA, October
11-14, 2009 (2009), J. N. Matthews and T. E. Anderson, Eds., ACM,

pp. 207–220.

[24] Lattuada, A., Hance, T., Cho, C., Brun, M., Subasinghe, I., Zhou, Y.,

Howell, J., Parno, B., and Hawblitzel, C. Verus: Verifying rust pro-

grams using linear ghost types. Proc. ACM Program. Lang. 7, OOPSLA1
(2023), 286–315.

[25] Li, J., Lattuada, A., Zhou, Y., Cameron, J., Howell, J., Parno, B.,

and Hawblitzel, C. Linear types for large-scale systems verification.

Proc. ACM Program. Lang. 6, OOPSLA1 (2022), 1–28.
[26] Li, S., Li, X., Gu, R., Nieh, J., and Hui, J. Z. Formally verified memory

protection for a commodity multiprocessor hypervisor. In 30th USENIX
Security Symposium, USENIX Security 2021, August 11-13, 2021 (2021),
M. Bailey and R. Greenstadt, Eds., USENIX Association, pp. 3953–3970.

[27] Li, S., Li, X., Gu, R., Nieh, J., and Hui, J. Z. A secure and formally

HotOS ’23, June 22–24, 2023, Providence, RI, USA Matthias Brun, Reto Achermann, Tej Chajed, Jon Howell, Gerd Zellweger, and Andrea Lattuada

verified Linux KVM hypervisor. In 42nd IEEE Symposium on Security
and Privacy, SP 2021, San Francisco, CA, USA, 24-27 May 2021 (2021),
IEEE, pp. 1782–1799.

[28] Lorch, J. R., Chen, Y., Kapritsos, M., Parno, B., Qadeer, S., Sharma,

U., Wilcox, J. R., and Zhao, X. Armada: Low-effort verification of

high-performance concurrent programs. In Proceedings of the 41st
ACM SIGPLAN Conference on Programming Language Design and Im-
plementation (New York, NY, USA, 2020), PLDI 2020, Association for

Computing Machinery, p. 197–210.

[29] Matsakis, N. D., and Klock, II, F. S. The rust language. In Proceedings
of the 2014 ACM SIGAda Annual Conference on High Integrity Language
Technology (New York, NY, USA, 2014), HILT ’14, ACM, pp. 103–104.

[30] Murray, T. C., Matichuk, D., Brassil, M., Gammie, P., Bourke, T.,

Seefried, S., Lewis, C., Gao, X., and Klein, G. sel4: From general

purpose to a proof of information flow enforcement. In 2013 IEEE
Symposium on Security and Privacy, SP 2013, Berkeley, CA, USA, May
19-22, 2013 (2013), IEEE Computer Society, pp. 415–429.

[31] Nelson, L., Bornholt, J., Gu, R., Baumann, A., Torlak, E., andWang,

X. Scaling symbolic evaluation for automated verification of systems

code with serval. In SOSP (2019), ACM, pp. 225–242.

[32] Nelson, L., Sigurbjarnarson, H., Zhang, K., Johnson, D., Bornholt,

J., Torlak, E., and Wang, X. Hyperkernel: Push-button verification

of an OS kernel. In Proceedings of the 26th Symposium on Operating

Systems Principles, Shanghai, China, October 28-31, 2017 (2017), ACM,

pp. 252–269.

[33] Nikita Koval, Dmitry Khalanskiy, and Dan Alistarh. A formally-

verified framework for fair synchronization in kotlin coroutines. CoRR
(2021).

[34] Pirelli, S., Valentukonytė, A., Argyraki, K., and Candea, G. Au-

tomated verification of network function binaries. In 19th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
22) (Renton, WA, Apr. 2022), USENIX Association, pp. 585–600.

[35] Tao, R., Yao, J., Li, X., Li, S., Nieh, J., and Gu, R. Formal verification

of a multiprocessor hypervisor on arm relaxed memory hardware. In

SOSP ’21: ACM SIGOPS 28th Symposium on Operating Systems Principles,
Virtual Event / Koblenz, Germany, October 26-29, 2021 (2021), R. van
Renesse and N. Zeldovich, Eds., ACM, pp. 866–881.

[36] Wentzlaff, D., and Agarwal, A. Factored operating systems (fos):

The case for a scalable operating system for multicores. SIGOPS Oper.
Syst. Rev. 43, 2 (apr 2009), 76–85.

[37] Yang, J., and Hawblitzel, C. Safe to the last instruction: automated

verification of a type-safe operating system. In Proceedings of the
2010 ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2010, Toronto, Ontario, Canada, June 5-10, 2010
(2010), B. G. Zorn and A. Aiken, Eds., ACM, pp. 99–110.

	Abstract
	1 Introduction
	2 Background
	3 The client application contract
	4 Verified NrOS
	4.1 NrOS design
	4.2 Verus
	4.3 Verification methodology
	4.4 The refinement theorem

	5 The page table prototype
	6 Concluding remarks
	References

