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Introduction Streaming computations work on con-
tinually changing data streams, and fault tolerance is
crucial to recover state corresponding to inputs that
have since passed. Naive implementations require so-
phisticated fault tolerance, because they must record the
behavior of otherwise unstructured computation. We
�nd that by restricting our attention to functional com-
putations mapped over streams of data, we can rely on
much simpler and more e�cient mechanisms.

Motivation Operator state in streaming jobs is very
valuable and should be guarded against failure: lack of
fault-tolerance would result in incorrect results after re-
covery. Additionally, streaming jobs run for long periods
of time, accumulating state over several days or even
months: reprocessing all input in the case of failures
would be prohibitively expensive and time-consuming.
At the same time, the common approaches to fault-
tolerance based on snapshots or active replication pro-
vide additional guarantees that are often unnecessary
and can have a signi�cant negative impact on latency
and overall performance.
We explore a technique that reduces the impact on

steady-state performance by moving the replication out
of the critical path, thanks to careful selection of the
right guarantees.

Marker-based checkpointing vs. dependency track-
ing Marker-based checkpointing mechanisms (i.e.
Flink[F]), require cross-operator coordination to provide
consistency guarantees for nondeterministic computa-
tions. When in-band coordination markers are used, (i)
the operators have to stall waiting for all markers to be
aligned and (ii) cyclical topologies will deadlock.

Alternately, RDDs organize stage output in large chunks,
which can be recomputed by inspecting their dependen-
cies in the data�ow graph. This removes the need for
explicit synchronization, but doesn’t provide the oppor-
tunity for incremental checkpoints, and so reduces the
frequency with which checkpoints can occur.

Our solution We adopt the logical boundaries of RDD
approaches, but replace the full checkpoint with a log-
structured merge-tree (LSM).
LSMs support incremental updates with low cost,

recording only the changed entries in an append-only
log. After each stage of a functional computations ap-
plied over streaming data, we record newly produced
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LSM layers, and perform maintenance (merging) as re-
quired. Layers can be persisted as resources permit, trad-
ing recovery time against run-time overhead.

Anticipated bene�ts of log-structured state The im-
mutable and append-only nature of the log enables asyn-
chronus replication of the state with minimal coordina-
tion. We don’t require a consensus-based commit pro-
tocol: as soon as a batch of updates for a certain se-
quence number has been replicated to enough machines
to ensure resilience to failure and network partitions,
we can promote that batch to a safe rollback point and
downgrade the persistence requirements for the inputs
correspondingly.
This fundamentally changes fault-tolerance to a per-

formance optimization, where di�erent persistence lev-
els (in memory, on disk, replicated remotely) can be used
as resources permit. The more layers of the LSM can be
persisted, at additional runtime cost, the more quickly
one can recover from di�erent classes of failures. When
lightly loaded we can persist regularly to each level, en-
suring brisk recovery; when more heavily loaded the
persistence can be scaled back at the cost of greater
potential recover times.

Recovery The recovery process is very simple in no-
sync. Since all computations are functional and the log is
append-only, the replicated data is always consistent and
therefore we can always recover from the input. Further,
if results are already available in the log, re-computation
can be avoided. In practice, the recovery process starts
new copies of the failed operators in the surviving nodes
where their input collections have been replicated. The
logs are rolled back to a safe point corresponding to a
complete (logical) timestamp, and execution is resumed.

Other features The ability to selectively roll-back op-
erators to any previous consistent state enables a variety
of applications beyond fault-tolerance. A section of the
computation can be rewound and then resumed with a
tweaked version of the business logic to compare the
outcomes. In a similar way, the replicated logs can serve
as the basis for speculative execution of parallel tasks to
mitigate the adverse e�ects of stragglers.
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MOTIVATION

OUR APPROACH: EXPLICIT DATA DEPENDENCIES AND INCREMENTAL STATE UPDATES

➤ Any non-trivial streaming application 
needs to maintain state 
➤ rolling aggregation, windows 

➤ Streaming applications run for days, 
months, even years 

➤ Distributed systems will fail
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➤ Snapshot-based and transaction-based 
➤ cost: requires coordination 
➤ ensures consistency for non-deterministic 

computation (many computations are 
deterministic) 

➤ Active replication to identical standbys 
➤ cost: requires 2x resources 
➤ provides zero-downtime guarantees (often 

not necessary) 

EXISTING FAULT-TOLERANCE MECHANISMS

Operator input: Input 
tuples are tagged  
with sequence numbers

Operator log: Incremental 
updates to the state 
are tagged with sequence no.

Dependencies 
between the input and 
the state updates.

TRADITIONAL CHECKPOINTING: THE PROBLEM WITH COORDINATION
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➤ Marker-based approach 
➤ waits for a checkpoint marker from 

each input 
➤ has to wait for all markers before 

proceeding 

➤ Marker-based approach 
➤ waits for a checkpoint marker from 

each input 
➤ would deadlock in cyclical 

topologies
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We derive a dependency graph 
between groups of tuples and 
state updates

Incremental updates can be performed 
asynchronously, with no coordination 
➤ Minimal steady-state failure-free 

overhead 
➤ Minimal recomputation on recovery 

by exploiting data dependencies

LOG STRUCTURE

The in-memory operator state 
is an indexed view of the 
incremental updates. 
An LSM-like data structure 
stores the state updates as 
small incremental updates at 
the top. We merge layers 
much like an LSM, trading off 
recovery time and run-time 
overhead.

RECOVERY
➤ functional computation, can always recover from 

input (via rollback) 
➤ replicated data always consistent (append only) 
➤ re-computation can be avoided if results are 

available in log

FUTURE WORK
➤ time travel 
➤ dynamic rescaling

LSM trees enable incremental updates with low cost We can use them to cache recovery checkpoints for 
functional computations applied over streaming data

INCREMENTAL STATE UPDATES ARE PRACTICAL IN FUNCTIONAL COMPUTATIONS

PERFORMANCE TRADE-OFF
➤ Tradeoff between the steady-state 

failure-free overhead and the time it 
takes to recover 

➤ We can reduce the failure-free 
overhead by focusing on the right 
guarantees 

Dataflow edges imply data dependencies
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➤ Flink (RBEA)[1]: Operator stall >500ms ▶ directly affects latency

[1] P. Carbone, S. Ewen, G. Ora, S. Haridi, S. Richter, and K. Tzoumas, “State Management in Apache Flink”

➤ No operator stalls 
(>500ms lower latency than 
Flink with 200G state) 

➤ ms-scale incremental updates 

Expected perf benefits

➤ Flink (RBEA)[1]: 100s for 100GB state snapshot

➤ low recovery cost makes a short failure detection 
timeout feasible (potentially ~10s faster then Flink)


